If it's not what You are looking for type in the equation solver your own equation and let us solve it.
p^2+6p+11=10
We move all terms to the left:
p^2+6p+11-(10)=0
We add all the numbers together, and all the variables
p^2+6p+1=0
a = 1; b = 6; c = +1;
Δ = b2-4ac
Δ = 62-4·1·1
Δ = 32
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{32}=\sqrt{16*2}=\sqrt{16}*\sqrt{2}=4\sqrt{2}$$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(6)-4\sqrt{2}}{2*1}=\frac{-6-4\sqrt{2}}{2} $$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(6)+4\sqrt{2}}{2*1}=\frac{-6+4\sqrt{2}}{2} $
| 3^(5x-1)=12 | | a. 6a-11=7 | | 7a+3(240-a)=1360 | | 4^x=7^3x-5 | | n^2-20n+16=-3 | | 7a+(1360-7a)=1360 | | 10b–3=27 | | –9x+2=11 | | 63÷f=7 | | 5h+9+3=37 | | 2+g-(-3)=-5 | | 3x-10=0. | | 3w+29=-5(w-1) | | (x+4)(xˆ2+4x+16)=xˆ3+64 | | 7u-5+2(4u+5)=-3(u+3) | | Y=x⁵+10x³-9x | | (D2+4D+5)*y=0 | | 2/3(3n-30)=3/4(4n-7) | | X-2-x-3=6 | | 2(2+x)=3(3+13) | | 3w+10-7-w=7 | | (x+4)/6=(x+1)/3 | | x+x+2=26 | | -6|-r-4|=-18 | | X/2+x/3x/4=1 | | 2x/x+3+1/12=3/2x-1 | | 7a+32=15a | | 9u-27=12u | | 4a-1=a+2 | | 3x+8=32;8 | | 7x^2-51x+108=0 | | x/5+5=30 |